You are viewing paulmck

Previous Entry | Next Entry

HOTPAR 2013

BookAndGlasses
I had the privilege of attending this year's USENIX Workshop on Hot Topics in Parallelism (HOTPAR), which was as always an interesting gathering. One very positive change compared to the first HOTPAR in 2009 is that the participants seemed much more comfortable with parallelism. This is not to say that I agreed with all viewpoints put forward (quite the contrary, as other attendees can attest!), but rather that the discussions this year seemed to be driven by actual experience, in happy contrast with the first year's tendency towards conceptual opinions.
There were also more talks stretching beyond pure scalability. Some areas follow, along with examples: from the workshop, from the Linux community, of things needing doing, and of things that will likely be done to us.

The first area is extreme scale, with Bill Dally's keynote presentation being the best example. Over the next seven years, Bill expects a 50x performance improvement provided by systems sporting 18,000 GPUs with no fewer than ten billion concurrently executing threads. Yes, Bill expects systems to achieve 1,000 PFLOPS by the year 2020. There was less discussion of single-system extreme scale, in fact, a number of participants seemed quite surprised that the Linux kernel could run on systems with 4096 CPUs (admittedly with severely constrained workloads).

The second area is energy efficiency, where Bill again put forward some interesting predictions. You see, he calls for this 50x performance increase to be provided by a system drawing only 2x the power of current extreme-scale supercomputers. My paper and posters were also mainly about energy efficiency, albeit for much smaller devices. Unfashionable though it might be to admit this, much of my work on energy efficiency has felt like something being done to me. :-)

The third area is predictability, in this case, a lightening talk on capacity planning from Greg Bronevetsky. Of course, real-time response is another example of predictability, and many attendees were surprised that the Linux kernel's -rt patchset could achieve latencies in the low tens of microseconds. At a larger scale and at longer response times, Eric Brewer's Parallelism in the Cloud keynote discussed throughput/latency tradeoffs in cloud-computing environments, with the usual lament that many mechanisms that improve throughput degrade latency, which also qualifies as something being done to us. The saving grace for most cloud environments is that a large chunk of the cloud-computing workload is time-insensitive batch processing, which allows the cloud to run at reasonable utilization levels while still meeting interactive response-time goals. Interestingly enough, Berkeley is getting back into the OS business, working on an OS that provides just enough functionality for cloud-based applications. For example, this OS provides only rudimentary scheduling, with more complex scheduling policies being implemented by user programs.

The fourth area is heterogenous computing, with Bill Dally's keynote being the primary case in point. Sheffield, Anderson, and Keutzer presented on Three-Fingered Jack, which allows Python programs to use SIMD vector units. Tillet, Rupp, Selberherr, and Lin presented Towards Performance-Portable, Scalable, and Convenient Linear Algebra, which discussed performance portability across multiple GPUs. They were able to automatically generate code from OpenCL that beat the best hand-generated code, which I take as a sign that GPGPUs are finally coming of age. Perhaps GPUs will one day feel more like an organic part of the overall computing system.

The fifth area is software-engineering implications. The discussion in this area has advanced significantly since 2009, for example, it was good to see transactional-memory researchers taking debugging seriously (Gottschlich, Knauerhase, and Pokem But How Do We Really Debug Transactional Memory Programs?). They proposed additional record-replay hardware support, which has a number of interesting issues, including the need to ensure that other CPUs replay in a manner consistent with the CPU that is executing the transaction that is being debugged. Another approach is to allow non-transactional accesses within a transaction, so that these non-transactional accesses are not rolled back should the transaction abort. This provides a straightforward printf-like capability without the need for replay. Such non-transactional accesses are supported on some commercial platforms, including Power (suspended transactions) and the mainframe (the non-transactional store instruction). Perhaps other hardware platforms supporting transactional memory will also gain support for non-transactional accesses within a transaction.

The sixth and last area is extreme productivity via application-specific approaches. Quite impressively, Best, Jacobsen, Vining, and Fedorova are looking to enable artists and designers to successfully exploit parallelism in Collection-focused Parallelism. This talk recalled to mind how much the spreadsheet, word processor, and presentation manager did for PC uptake in the 1980s, in stark contrast to any number of high-minded language-based innovations. As I have said before, it seems likely that application-specific tools will provide the best path towards ubiquitous parallel computing. It is certainly the case that other engineering fields have specialized over time, and it would be quite surprising if computing were to prove the sole exception to this rule.

There were other papers as well, which can be downloaded from the conference website. One talk deserving special mention is Martin Rinard's Parallel Synchronization-Free Approximate Data Structure Construction, which uses approximate data-structure construction for a digital orrery (similar to his earlier talk at RACES'2012). It is always good to have Martin around, as his ideas are perceived by many to be even crazier than RCU.

Finally, it is important to note that it will not be sufficient to do well in only one or two of these areas, craziness included. Parallel systems of the future must do all of this simultaneously, which means that there is no shortage of parallel-programming work left to be done!

Comments

izard
Jun. 30th, 2013 07:56 am (UTC)
On predictability,
> Linux kernel's -rt patchset could achieve latencies in the low
> tens of microseconds.
To achieve low tens of microseconds, if -rt patchset provides the necessary s/w infrastructure, there are still a lot of h/w issues to address:
SMIs, shared LLC, memory bandwidth shared sith GPU, Power management, interrupt and PCIe timing jitter, HT, etc - each can break or almost break it.
paulmck
Jun. 30th, 2013 02:02 pm (UTC)
Indeed, real-time response is a system-wide property
In addition to your list of hardware issues, there are of course application issues. So I stand my my statement that the Linux kernel can achieve low tens of microseconds, but I do agree that the cooperation of hardware, firmware, software, daemons, libraries, and application code are also required. That said, before the -rt patchset, the Linux kernel could not achieve these low latencies even if the rest of the system cooperated fully.